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A B S T R A C T

A new modeling approach was developed to facilitate simulations of soil water flow and energy transport during
sporadic freezing–thawing episodes typical for the winter regime of humid-temperate continental climate. The
approach is based on an accurate non-iterative algorithm for solving the highly non-linear energy balance
equation during phase transitions. The new algorithm was successfully verified against the analytical solution for
idealized freezing and thawing conditions. Two examples of the model application – under hypothetical and real
field conditions – are given.

1. Introduction

The physically sound description of processes accompanying phase
transitions during freezing and thawing of soil water is a task that has
received growing attention in the recent literature. The related studies
focused on different aspects of the soil freezing phenomena, addressing
the impact of phase transitions on the soil thermal budget (e.g. Luo
et al., 2003), the snowmelt runoff enhancement by frozen soil condi-
tions (e.g. Cherkauer and Lettenmaier, 1999), the permafrost fate
modeling (e.g. Riseborough, et al., 2008), the frost heaving effects (e.g.
Peppin and Style, 2013), etc.

In soils, pore water freezes over a relatively narrow range of tem-
peratures below the freezing point of pure water (273.15 K at normal
atmospheric pressure). The relationship between freezing point de-
pression and liquid water saturation of a particular soil can be described
by a soil freezing curve. Soil freezing curves can be determined ex-
perimentally, predicted based on the physics of liquid-ice interface or
estimated using empirical expressions. The exact course of freezing
curves is, however, difficult to determine with accuracy.

The shape of freezing curves is often predicted using the generalized
Clausius-Clapeyron equation (Koopmans and Miller, 1966; Kay and
Groenevelt, 1974; Spaans and Baker, 1996) or Gibbs-Thomson equation
(e.g. Strange et al., 1993; Mitchell et al., 2008). These equations predict
the freezing point depression of about one degree Celsius over the range
of pore sizes from 1mm to 0.1 µm. The adequacy of these two equations
(leading to very similar predictive formulas) is based on several sim-
plifying assumptions: (i) Thermodynamic equilibrium at the ice–liquid

interface during phase transitions is assumed. (ii) The ice pressure is
usually approximated by atmospheric pressure. (iii) The curvature of
the ice–liquid interface is assumed to be similar to the liquid–air in-
terface, invoking the freezing–drying analogy. Although these as-
sumptions have been accepted as reasonable working hypotheses by
most researchers, some aspects of the underlying theory have been
disputed. For example: The thermodynamic equilibrium at the soil
freezing front was questioned by Ma et al. (2015), arguing that soil
freezing may tend to be a non-equilibrium (irreversible) thermo-
dynamic process. Equating ice pressure with atmospheric pressure may
be inappropriate in unsaturated soils where ice–air interface exists in
addition to ice–liquid interface (e.g. Miller, 1980). The freezing-drying
analogy assumption was criticized by Hohmann (1997), who pointed
out to the physical dissimilarity of the two processes.

As pointed out e.g. by McKenzie et al. (2007), the shape of soil
freezing curve is very important when apparent heat capacity concept
(e.g. Harlan, 1973) is used to formulate energy balance equation in
freezing soil models. The concept combines soil heat capacity with the
slope of freezing curve. The slope is obtained by differentiating the soil
freezing function, which is usually very steep, thus dominating the re-
sulting value of apparent heat capacity coefficient during phase tran-
sitions. Uncertainties associated with the determination of freezing
curves propagate through this coefficient to the energy balance equa-
tion – enhanced by the differentiation procedure, which in turn nega-
tively affects the accuracy of model predictions.

There is a strong experimental evidence that processes occurring at
the ice–liquid interface during freezing of soil water cause lowering of

https://doi.org/10.1016/j.jhydrol.2019.124071
Received 12 June 2019; Received in revised form 8 August 2019; Accepted 23 August 2019

⁎ Corresponding author.
E-mail address: vogel@fsv.cvut.cz (T. Vogel).

Journal of Hydrology 578 (2019) 124071

Available online 24 August 2019
0022-1694/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2019.124071
https://doi.org/10.1016/j.jhydrol.2019.124071
mailto:vogel@fsv.cvut.cz
https://doi.org/10.1016/j.jhydrol.2019.124071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2019.124071&domain=pdf


soil water potential, which leads to the migration of water from un-
frozen soil below freezing front toward the front — the phenomenon
often referred to as cryosuction (Taber, 1930; Coussy, 2005; Peppin and
Style, 2013; Kurylyk and Watanabe, 2013). Additional depression of
freezing point temperature and soil water potential at the freezing front
can be caused by the presence of solutes in soil water (e.g. Petrenko and
Whitworth, 1999; Bittelli et al., 2003), as dissolved salts are excluded
from the ice phase and remain in the unfrozen liquid phase. The supply
of water toward the ice–liquid interface may eventually lead to the
formation of ice lenses, and consequently to soil frost heaving. How-
ever, the magnitude of the water potential depression and thus the
intensity of the water supply to the freezing front remains controversial
(Black, 1995; Hohmann, 1997; Bronfenbrener and Bronfenbrener,
2010; Groenevelt and Grant, 2013). It seems that a reliable quantitative
description of the complex processes accompanying the effect of cryo-
suction is yet to be developed, although some advances in this respect
have been reported (e.g. Dall’Amico et al., 2011; Groenevelt and Grant,
2013; Tubini et al., 2017).

Increasingly, numerical models of varying complexity are used to
simulate the thermal balance and water balance of soils exposed to
freezing. Important aspects in soil freezing modeling are the highly non-
linear nature of the energy balance equation during the phase transition
and the coupling of thermal and mass balance equations describing
energy and soil water fluxes. To handle the transformations between
sensible and latent heat during freezing–thawing events, the majority of
existing models employ the concept of apparent heat capacity (Harlan,
1973; Fuchs et al., 1978; Rankinen et al., 2004; Hansson et al., 2004;
Dall'Amico et al., 2011; Endrizzi et al., 2014). As explained above, the
main disadvantage of this approach is that the apparent heat capacity
increases by several orders of magnitude at the freezing point, which
complicates the numerical solution possibly causing numerical oscilla-
tions and convergence problems (e.g. Hansson et al., 2004; Dall'Amico
et al., 2011).

A number of models include physically-based soil freeze–thaw
routines of varying computational expense. For example: McKenzie
et al. (2007) modified U.S. Geological Survey’s SUTRA computer code
to simulate fully saturated coupled pore water and energy transport in
northern peatlands. Their freezing model is based on the apparent heat
capacity concept, using empirical freezing functions to approximate the
liquid water content versus freezing temperature relationship. They
neglect the effects of cryosuction and freezing point depression due to
dissolved salts in the porewater. Similar approach was used in the land-
surface scheme of the Community Climate System Model (CLM) de-
veloped for simulations of permafrost dynamics, as described in
Nicolsky et al. (2007). The Pan-Arctic Water Balance Model (PWBM)
includes an approach similar to the CLM, modified by Rawlins et al.
(2013). In another study, Bense et al. (2012) describe simulations with
the generic finite element code FlexPDE designed to study the hydraulic
regime of sub-permafrost aquifer systems. They assume that changes in
water-content in freezing soil proceed from full water-saturation to full
ice-saturation following the freezing curve approximated by a
smoothed step function between 0 °C and –0.25 °C, and apply the ap-
parent heat capacity concept to solve the heat flow equation. A com-
prehensive review of soil freezing models is given e.g. in Kurylyk and
Watanabe (2013), who provide both historical and comparative study
of basic theoretical principles and modeling approaches.

The objectives of the present study are: (1) to formulate a simplified,
yet physically sound, approach for modeling water flow and energy
transport in a variably-saturated partially frozen soil, applicable to
episodic freezing conditions; (2) to develop a reliable non-iterative al-
gorithm for solving the highly non-linear energy balance equation; (3)
to verify the newly developed model against available analytical solu-
tions of the energy balance equation; and (4) to provide examples of the
model application to numerical simulations of freezing-thawing events.

2. Methods

2.1. Basic pore space partitioning relationships

The composition of soil is commonly expressed as a sum of volu-
metric fractions of individual soil constituents. We consider five con-
stituents:

+ + + + =ε ε ε ε ε 1m o i w a (1)

where m stands for mineral particles, o for organic matter, i for ice, w
for liquid water and a for air. The mineral particles and organic matter
constitute the soil matrix. The soil pore volume is partitioned among
three phases – ice, liquid water and air:

+ + =ε ε ε ϕi w a (2)

where ϕ is the porosity (dimensionless). Further we assume that the soil
matrix is rigid. This makes the description of phase changes during soil
freezing easier, but, at the same time, it excludes some important
phenomena accompanied by deformations of the soil matrix, namely
the frost heaving.

Neglecting the presence of water vapor, the mass balance of soil
water in the pore space requires that:

+ =ρ ε ρ ε ρ θi i w w w (3)

where θ is the equivalent liquid water content (dimensionless), ρi is the
density of ice (kg m−3), and ρw is the density of liquid water (kg m−3).

Under the assumption of rigid soil, it is useful to distinguish the
water content at the liquid water saturation θs

w( ) (equal to the saturated
water content of unfrozen soil θs) and the equivalent liquid water
content at the ice saturation θs

i( ):

= = =θ θ ϕ θ
ρ
ρ

ϕs
w

s s
i i

w

( ) ( )

(4)

In the present version of our model, we assume that ≤θ θs
i( ), so that the

soil is always sufficiently unsaturated to allow for the ice expansion.

2.2. Soil thermal properties

Thermal properties of soil are characterized by the heat capacity
and the soil thermal conductivity. The volumetric heat capacity of bulk
soil can be evaluated based on the individual capacities of the soil
constituents:

= ⎧
⎨⎩

+ +
+ +

C
ε c ε c ε c
ε c ε c ε c

for unfrozen soil
for frozen soil

m m o o w w

m m o o i i (5)

where cm, co, cw and ci are the volumetric heat capacities of mineral
particles, organic matter, liquid water and ice (J m−3 K−1). Note that
the contribution of liquid water heat capacity in frozen soil is in the
present version of our model neglected.

The soil thermal conductivity depends not only on the con-
ductivities and fractions of individual soil constituents but also on their
distribution within the soil. Each soil thus exhibits a specific relation-
ship between the water content and the thermal conductivity.
Moreover, when the water moves through the soil, the heat advection
has to be taken into account. Therefor the apparent soil thermal con-
ductivity function is defined as:

= +λ θ q λ θ c d q( , ) ( ) | |e w (6)

where λe(θ) is the thermal conductivity function (W m−1 K−1) de-
scribing the λ−θ relationship for variably saturated conditions, d is the
thermal dispersivity (m), which plays a similar role in the heat trans-
port modeling as does the mechanical dispersivity in the solute trans-
port modeling (de Marsily, 1986), and q is the soil water flux (m s−1).

To approximate the thermal conductivity function, we use the ap-
proach of Côté and Konrad (2005):
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where λdry and λsat
w( ) are the soil thermal conductivities at dry and water-

saturated conditions (W m−1 K−1), κ is an empirical parameter used to
account for different textural soil classes (dimensionless), and χ (W
m−1 K−1) and η (dimensionless) are empirical parameters accounting
for particle shape effects. Estimates of κ, χ and η for basic types of soils
can be found in Côté and Konrad (2005).

Based on the data published by Côté and Konrad (2005), we suggest
the following simplified form of the λe(θ) function for frozen soil con-
ditions:
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(9)

An example of the parameterization of soil thermal conductivity func-
tion based on Côté and Konrad (2005) approach is given in Section 4.2
(Table 2).

2.3. Model assumptions

Following simplifying assumptions are made in the present version
of our model: (1) Soil is rigid. No soil heaving due to ice expansion is
allowed. (2) The freezing point depression of soil water is neglected.
Soil water freezes and thaws at the temperature of 273.15 K. This as-
sumption also means that the soil freezing function is approximated by
a step function with infinite slope. Infinite slope can be applied because
we do not use the concept of apparent heat capacity to formulate en-
ergy balance equation. (3) Liquid water in frozen soil is immobile and
its amount is negligible. This assumption could be relaxed by including
unfrozen residual water content in frozen soil, e.g. to improve the ac-
curacy of frozen soil heat capacity estimation in soils with large residual
water content (e.g. clayey soils). (4) Soil water potential depression at
the freezing front, caused by interfacial forces and/or solute expulsion,
is neglected. Consequently, the phenomenon of cryosuction is not ac-
counted for.

The above set of assumptions clearly limits the applicability of our
model. Nevertheless, we believe that there is a class of problems for
which it might be beneficial to use a simplified solution, rather than
more complex solutions requiring large amount of additional informa-
tion − often loaded with considerable experimental and/or theoretical
uncertainty.

2.4. Energy balance

In a soil system exposed to freezing–thawing conditions, a sig-
nificant amount of energy is transferred between sensible and latent
heat, which together contribute to the internal energy of the system.
The internal energy can be expressed as:

− = + −U θ T ε U θ T Lε C θ T T T( , , ) ( , , 0) ( , )( )w w0 0 (10)

where U is the internal energy of bulk soil (J m−3), L is the product of
the specific latent heat of fusion and liquid water density (J m−3), εw is
the liquid water content (dimensionless), T is the temperature (K), T0 is
the freezing point temperature (equal to 273.15 K). As we are interested
only in changes of U and not in absolute values, it is convenient to
assume that the internal energy of frozen soil at T0 is equal to zero, or
more precisely that U(θ,T0,0)= 0.

The volumetric heat capacity can be expressed as a linear function
of equivalent liquid water content for temperatures above as well as
below the freezing point (i.e., for fully unfrozen or fully frozen soil):

= ⎧
⎨
⎩

+ + = >
+ + = <

+

−C θ T
ε c ε c θc C θ T T
ε c ε c θc C θ T T( , )

( )
( )
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ρ
ρ i

0

0
w

i (11)

The value of C at T0 is not needed to evaluate U from Eq. (10), as the
second term on the right-hand side of the equation is equal to zero for
T= T0. In fact, the heat capacity is undefined at the freezing point
during phase transitions. However, we can assume that C(θ,T0) is equal
to either C+(θ) or C−(θ), depending on whether T0 is approached from
the above-freezing temperatures or below-freezing temperatures.

The local balance of internal energy in a soil system requires that:

∂
∂

+
∂
∂

+
∂
∂

= − −U
t

j
z

j
z

S SL H
L H (12)

where jL is the flux of latent heat (W m−2), jH is the flux of sensible heat
(W m−2), SL and SH are the sinks of latent and sensible heat due to the
uptake of water by plant roots (W m−3).

The latent and sensible heat fluxes are expressed as:

= = − − ∂
∂

j qL j qc T T λ T
z

( )L H w 0 (13)

The latent and sensible heat sinks are specified as:

= = −S S L S S c T T( )L w H w w 0 (14)

where Sw is the root water uptake intensity (s−1).
After substituting (10), (13) and (14) into (12) and assuming that

the equivalent liquid water content does not change with time when
T≤ T0:
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(15)

The terms involving T0, i.e. the third and fifth term on the left-hand side
together with the third term on the right-hand side, cancel out due to
the equivalent liquid water balance. The equation then becomes:

∂
∂

+ ∂
∂

+
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∂

− ∂
∂

⎛
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⎞
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c
qT
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q
z
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w
w

w w w (16)

The resulting energy balance equation can be decomposed into se-
parate balance equations of sensible and latent heat:

∂
∂

+
∂
∂

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

+ = −CT
t

c
qT
z z

λ T
z

S c T Qw w w
(17)

∂
∂

+
∂
∂

+ =L ε
t

L
q
z

S L Qw
w (18)

where Q is the sink/source of internal energy (J m−3 s−1) due to the
phase transition. Sink in the sensible heat balance (17) represents
source in the latent heat balance (18) and vice versa. The value of Q is
positive for melting and negative for freezing. The magnitude of Q is
determined by the rate of the phase change:

= − ∂
∂

Q
ρ
ρ

L ε
t

i

w

i

(19)

Note that Eqs. (18) and (19) can also be interpreted as the mass balance
equations for liquid and frozen water.

2.5. Soil water flow

Alternatively, the mass balance of soil water can be written in terms
of the equivalent liquid water content:

∂
∂

+
∂
∂

+ =θ
t

q
z

S 0w (20)

Note that (20) can be obtained by combining (18), (19), and (3).
To describe the flow of soil water, the mass balance equation needs
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to be complemented with an appropriate momentum balance equation
and corresponding constitutive relationships. In case of the unfrozen
soil, this role is played by the Darcy-Buckingham equation and the
functions representing soil hydraulic properties − the soil water re-
tention function, θ(h), and the hydraulic conductivity function, K(h):

= ⎛
⎝

∂
∂

+ ⎞
⎠

= =q K h h
z

θ θ h K K h( ) 1 , ( ), ( )
(21)

where h is the soil water pressure head (m). For freezing/thawing
conditions, the situation becomes more complicated. It is common to
assume that freezing of fully or partially saturated soil proceeds from
water in large pores to progressively smaller ones (Fig. 1). Due to the
freezing point depression, a small amount of water in frozen soil re-
mains unfrozen even at temperatures well below 273.15 K. In our
simplified modeling approach, we assume the amount and mobility of
such water negligible. Consequently, the soil water flow is limited to
unfrozen soil only. Under specific conditions, liquid water can also
enter air-filled pores of partly saturated frozen soil (e.g. during rain-on-
frozen-soil events). Such conditions are dealt with in our model by in-
troducing a separate preferential flow domain (see the example pro-
blem presented in Section 4.2).

2.6. Numerical solution of energy balance

The numerical solution of the energy balance Eq. (17) has been
implemented into the flow-and-transport code S1D (Vogel et al., 2010,
2011). The solution is based on the finite element method, which ap-
proximates the governing partial differential equation with a set of al-
gebraic equations. The main challenge in solving this set of equations is
associated with its strong nonlinearity during phase transition. The
nonlinearity is a direct consequence of the abrupt change of internal
energy as a function of temperature at the freezing point (Fig. 2).

In most, if not all, existing codes the nonlinear set of algebraic
equations is solved iteratively, which makes the resulting algorithm
computationally expensive and prone to problems with convergence. In
what follows, we introduce a robust non-iterative solution.

We assume that the soil profile can be divided into three zones: (1)
frozen soil, (2) freezing-thawing soil and (3) unfrozen soil. These zones
are characterized by distinct internal energy regimes:

=
⎧

⎨
⎩

− <
=

+ − >

−

+
U

C T T T T
Lε T T
Lθ C T T T T

( )

( )
w

0 0

0

0 0 (22)

An important aspect, which allows us to solve the energy balance
equation by a non-iterative procedure, is that the freezing–thawing
zone in the soil profile stays at the constant temperature T0 during

phase transition, i.e., until completely frozen (εw=0) or completely
unfrozen (εw= θ).

The suggested numerical solution proceeds as follows. The appli-
cation of the finite element method to solve the energy balance Eq. (17)
results in a set of algebraic equations which needs to be solved for nodal
temperatures at each time step. This set can be expressed as a tridia-
gonal matrix system. The n-th row of the system can be written as:

+ + = −− +A T A T A T B Qn n n n n n n n1 1 2 3 1 (23)

where A and B are coefficients computed from the local soil thermal
properties and soil water fluxes (i.e. from nodal values of C, cw, λ, q and
Sw) and Qn is the nodal value of sink/source of internal energy due to
the phase transition.

If a nodal value of internal energy Un (calculated from Eq. (22))
drops below Lθ by cooling of unfrozen soil or rises above zero by
warming of frozen soil at any nodal point n (cf. Fig. 2), the coefficients
of n-th row of the matrix system are stored and replaced by dummy
values (denoted by asterisk) to force the matrix solver to produce
Tn= T0:

= = = = =∗ ∗ ∗ ∗ ∗A A A B T Q0, 1, 0, , 0n n n n n1 2 3 0 (24)

This operation removes the phase transition singularity from the
system. The resulting set of equations is linear and can be solved to
yield the vector of unknown nodal temperatures Tn.

The original (previously stored and replaced) coefficients are then
used to evaluate Qn. After that, the values of Qn are used to determine
the changes of liquid water content εw caused by the phase transition at
each nodal point of the freezing/thawing zone (cf. Eq. (19)):

⎛
⎝

⎞
⎠

= − ⎛
⎝

⎞
⎠

=ε
t

ρ
ρ

ε
t

Q
L

Δ
Δ

Δ
Δ

w

n

i

w

i

n

n

(25)

The resulting nodal values of liquid water content are then used to
update the values of Un (Eq. (22)) and the algorithm proceeds to the
next time step.

3. Model verification

3.1. Freezing

The freezing branch of our algorithm was verified against the ana-
lytical solution developed for a semi-infinite water column (Neumann,
1860 (in Weber, 1901)). The initial temperature of the column was
assumed to be +2 °C. The boundary temperature at the freezing end of
the column was set equal to −5 °C. The solution deals with the freezing
of pure water, therefore the soil porosity was set equal to 1. The model
results are compared with the analytical solution in Fig. 3. The figure
suggests a very good agreement between the two solutions.

Fig. 1. Partitioning of pore space between liquid water, ice and air (εw, εi and εa
are the volumetric fractions of liquid water, ice and air, f(r) is the pore size
distribution function, r is the pore radius, ϕ is the porosity, and θ is the
equivalent liquid water content).

Fig. 2. Internal energy as a function of temperature (T0 is the freezing point
temperature, L is the product of the specific latent heat of fusion and liquid
water density, and θ is the equivalent liquid water content).
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3.2. Thawing

The penetration of thawing front into an initially frozen semi-in-
finite column of a saturated soil as a result of a sudden increase in
surface temperature was solved analytically by Neumann (in Weber,
1901). His solution was used to verify the thawing branch of our al-
gorithm. The initial temperature of−5 °C, porosity of 0.5 and boundary
temperature of +5 °C were applied. The results of the numerical model
are compared with the analytical solution in Fig. 4. The figure shows
that the depth to thawing front predicted by the numerical model is in a
very strong agreement with the analytical solution.

4. Model application

4.1. Hypothetical freezing–thawing event

The following example problem deals with the numerical simulation
of a hypothetical freezing–thawing event, occurring over a period of
24 days. The soil profile is homogeneous, 2 m deep, consisting of a
sandy loam soil. The soil hydraulic and thermal properties correspond
to a real soil (the second layer in Table 1).

The simulation starts with a uniform distribution of temperature in
the soil profile. The initial temperature is set equal to +5 °C. At the time
zero, the surface temperature drops down to −5 °C and then stays
constant over the period of 10 days. After 10 days, the surface tem-
perature increases back to +5 °C and remains constant over the rest of
the simulated period.

As shown in Fig. 5, our model predicts a sharp freezing front se-
parating the frozen soil above from the unfrozen soil below the front.
During the initial 10-day period the freezing front advances to a depth
of 30 cm. Next, the surface temperature increases above the freezing
point, initiating the thawing phase of the event. During the thawing
phase, two thawing fronts develop as the frozen soil warms up by heat
conducted from the soil surface as well as from the deeper unfrozen part
of the soil profile. The frozen soil between the two thawing fronts is
quickly brought close to the freezing point. The thawing phase ends

Fig. 3. Solution of the freezing case: temperature development at various
depths as predicted by Neumann’s analytical solution (in Weber, 1901) and S1D
model.

Fig. 4. Solution of the thawing case: (a) temperature development at various depths simulated by the S1D model; (b) the thawing front depth development predicted
by Neumann’s analytical solution (in Weber, 1901) and S1D model.

Table 1
Hydraulic parameters of the soil profile at the Liz catchment meadow site; The
soil is conceptualized as a dual-continuum system represented by two flow
domains: the soil matrix domain (SM) and the preferential flow domain (PF).

Domain Depth θr θs α n Ks

(cm) (–) (–) (cm−1) (–) (cm d−1)

SM 0–8 0.36 0.62 0.050 2.00 10
8–100 0.15 0.40 0.024 1.25 1
100–500 0.07 0.27 0.060 1.48 0.1

PF 0–100 0.05 0.43 0.11 2.00 1000
100–500 0.05 0.43 0.11 2.00 0.1

θr and θs are the residual and saturated soil water contents, Ks is the saturated
hydraulic conductivity, and α and n are empirical parameters determining the
shape of the water retention and unsaturated hydraulic conductivity functions
based on the parameterization of van Genuchten (1980). Parameter values were
adopted from Votrubova et al. (2012).
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10 days after the surface temperature reversal, when the two thawing
fronts meet.

4.2. Episodic soil freezing in a mountain catchment

The above described model was used to simulate winter thermal
conditions at a meadow site of a mountain catchment. The site is si-
tuated in the Liz catchment – a small catchment belonging to the
headwater area of the Otava river basin, located in the Bohemian
Forest, Czech Republic. Hydraulic and thermal properties of the soil of
interest (sandy loam developed on Paragneiss bedrock, classified as
Eutric Cambisol) were adopted from Votrubova et al. (2012), while
simplifying the description to three distinct layers as provided in Tables
1 and 2. The simulated soil profile was five meters deep, discretized
with one-cm step.

The soil surface boundary condition was constructed using a simple
snow cover model. Precipitation was considered liquid if the air tem-
perature was not freezing. Snowmelt was approximated with a simple
degree-day method. Melting occurred if the air temperature exceeded
0.1 °C. A sine wave was used to mimic the melt factor annual variation
(between 0.05 and 0.25 cm °C−1 day−1). The melt factor values were
optimized to capture the snow disappearance time, deduced from the
albedo observations.

The liquid precipitation and the snowmelt intensities were used to
define the upper boundary condition of the soil water flow model
(Fig. 6a). The bottom boundary condition was set according to the
average specific discharge of the catchment (0.09 cm day−1).

The soil temperature at the upper boundary was derived from the
temperature measured 10 cm above the soil surface. Missing data for
few days in December were substituted with the observations from
previous and/or next days. For no-snow conditions, soil surface tem-
perature was set equal to the air temperature measured 10 cm above
ground. In case of snow cover, this air temperature was adjusted: the
soil surface temperature was kept below zero (above-zero temperatures,

observed above shallow snow cover, were not considered) and to ac-
count for the expected temperature attenuation due to the snow cover,
temperature fluctuations below zero were reduced (in our case, di-
viding by two provided pleasing results). Constant temperature of 9 °C
was set at the bottom of the simulated soil profile.

The S1D model was used in a dual-continuum mode to allow snow-
melt water to infiltrate (passing the frozen soil-matrix layer). The pre-
ferential flow domain was assumed to be unaffected by water phase
changes, i.e. remained fully conductive during freezing episodes.

Fig. 6b illustrates that the model can reproduce the soil freeze-thaw
cycle reasonably well. The seasonal variation of the soil temperature
near the soil surface is captured including timing of the soil thawing in
spring (manifested by the soil temperature beginning to follow diurnal
variations of the air temperature). In a detail view, the diurnal tem-
perature variations in unfrozen soil are underestimated. This dis-
crepancy is likely related to the inaccurate boundary condition, as the
surface temperature daily amplitudes are probably bigger than those
measured 10 cm above the surface. On the other hand, when the soil
becomes frozen, the diurnal temperature variations are overestimated.
This is probably due to the imperfect model representation of the soil
surface layer thermal properties under frozen conditions: our assump-
tion of negligible residual liquid water saturation may result in thermal
conductivity overestimation in the highly rooted surface layer. More-
over, unlike the observation, the model indicates soil thawing in Jan-
uary. This could again be caused by the unrealistic boundary condition,
i.e. by the near-surface air temperature being not an adequate proxy for
the soil surface temperature.

5. Summary and conclusions

A new modeling approach was developed to facilitate the simula-
tions of soil water flow and energy transport during sporadic free-
zing–thawing episodes, which are typical for the winter regime of
humid temperate continental climate. The approach is based on an
accurate non-iterative algorithm for solving highly non-linear energy
balance equation during the phase transitions.

The suggested modeling approach abstracts from many complexities
associated with the freezing phenomena in soils, yet preserves the
principal physical mechanism of conserving the internal energy of the
soil system during the phase transitions. When applied to simulate oc-
casional freezing soil conditions, the model algorithm delivers the de-
sired effect of slowing down the propagation of surface freezing tem-
peratures into deeper soil horizons by converting water latent heat into
sensible heat. The model also allows the evaluation of the extent and
duration of frozen soil conditions – a crucial information for soil water
flow modeling, as the frozen soil significantly reduces the soil hydraulic
conductivity.

The new algorithm was successfully verified against analytical so-
lutions for idealized freezing and thawing conditions. Two examples of
the model application – under hypothetical and real field conditions –

Table 2
Thermal parameters of the soil profile at the Liz catchment meadow site.

Domain Depth εm εo λdry λsat
w( ) κ

(cm) (–) (–) (W m−1 K−1) (W m−1 K−1) (–)

SM 0–8 0.14 0.14 0.07 0.35 0.6
8–100 0.58 0.02 0.25 1.42 1.9
100–500 0.73 0 0.36 1.75 1.9

PF 0–8 0.43 0.14 0.23 1.26 1.9
8–500 0.57 0 0.23 1.38 1.9

εm and εo are the volumetric fractions of of mineral and organic soil, λdry and
λsat

w( ) are the soil thermal conductivities at dry and water-saturated conditions, κ
is an empirical parameter used to account for different textural soil classes. The
parametrization is based on the approach of Côté and Konrad (2005). Para-
meter values were adopted from Votrubova et al. (2012).

Fig. 5. Simulated development of the soil temperature profile during the freezing–thawing event (only the upper 50 cm layer of the 2m deep soil profile is shown).
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were given. The latter example shows that the model is capable of si-
mulating transient freezing-thawing episodes and predicting the winter
soil thermal regime at the site of interest.
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